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Abstract—The paper discusses minimum-weight design of beams of continuously varying cross section that have
to carry any one of » systems of loads. The weight per unit length is assumed to be given by w(x) = a+5bY(x),
where a and b are constants and ¥{(x) is the yield moment at the cross section x. A design method is presented that
remains valid for the extreme cases n = 1 and n = oo and that enables the designer to prescribe a minimum value
Y, below which the yield moment is not allowed to drop. The use of the method is illustrated by examples.

1. INTRODUCTION

THIS paper is concerned with minimum-weight design of beams that have to support any
one of several systems of loads. Although beams of constant or piecewise constant cross
section are preferable for practical reasons, beams of continuously varying cross section
are discussed in the following, because they provide useful standards of comparison by
which the efficiency of more practical designs may be judged.

Letting x denote distance measured along the axis of the beam, we write the weight of
the beam segment between the cross sections x and x +dx as w(x) dx and assume that the
unit weight w(x) is given by

w(x) = a+bY(x), a.1

where a and b are constants and Y(x) is the yield moment at the cross section x. Within the
limited range of cross sections suitable for a beam that has a given span and is to carry given
loads, the actual relation between unit weight and yield moment can usually be linearized
in this manner. For a rectangular sandwich section with a core of constant dimensions and
identical thin face sheets of varying thickness, (1.1) represents the actual relation between
wand Y. Whenever the linear relation (1.1) is appropriate, minimizing the total weight of the
beam means minimizing the integral of Y(x) over the length of the beam.

Adopting the relation (1.1), Heyman [1] discussed minimum-weight design of beams
for a single system of loads. On the other hand, Gross [2], Gross and Prager [3], Save and
Prager [4], and Save and Shield [5] have treated minimum weight design of beams for
moving loads, i.e. for infinitely many systems of loads. The methods used in [2] through [5]
were specially devised for these problems rather than systematically developed from the
method used in [1]. In this paper, minimum-weight design of beams is discussed for an
arbitrary number n of load systems. A method is presented that remains valid for the
extreme cases n = 1 and n = oo and that enables the designer to prescribe a minimum
value Y; below which the yield moment must not drop.

T The results presented in this paper were obtained in the course of research sponsored under Contract No.
N00014-67A-0109-0003, Task NR 064-496 by the Office of Naval Research in Washington, D.C.
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2. GENERAL PRINCIPLES

Heyman [1] used a general theorem of Drucker and Shield [6], to show that a limit
design for a given single system of loads is a minimum-weight design if there exists an
associated yield mechanism with curvature rates of constant magnitude.t To discuss the
restrictions that the condition [v”(x)| = const imposes on the rate of deflection v(x), consider
a beam of the span L that is built in at both ends [Fig. 1(a)]. If all loads acting on the beam
have the same direction, statically admissible bending moments M(x) (i.e. bending moments
that are in equilibrium with these loads and satisfy the static boundary conditions) cannot
vanish at more than two points. Indeed,

M(x) = Mo(x)+M(0)(1——E)+M(L){’ 2.1)
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F1G. 1. (a) Built-in beam. (b) Statically admissible bending moments. (c) Rates of curvature of constant
magnitude. (d) Yield mechanism of minimum-weight design. (¢) Alternative rates of curvature of constant
magnitude. (f) Bending moments of minimum-weight design.

+ A “‘design” is specified by the function Y{(x). To verify that the design Y(x) is a “'limit design” for a given
set of loads, one must find : (i) statically admissible bending moments M(x) satisfying |M(x)l < Y(x), and (ii) an
“associated yield mechanism”, i.e. continuously differentiable rates of deflection v(x) satisfying the kinematic
boundary conditions and furnishing rates of curvature x(x) = —dZ2v(x)/dx? = —v"(x) that are “compatible”
with the bending moments M(x). To be compatible with M(x), the rate of curvature »(x) must vanish where
|M({x)] < Y(x) and have the sign of M(x) where |M(x) = Y(x).
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where M ((x) is the statically determinate bending moment produced by the given loads in
a simply supported beam of the same span, and M(0) and M(L) are the statically indeter-
minate clamping moments. The function M,(x) vanishes at the ends of the span and is
convex if all loads have the same direction [Fig. 1(b)]. Accordingly, M y(x) has no zero for
0 < x < L; we shall assume it to be positive in this open interval. The function M(x) then
vanishes at 0, 1, or 2 points in this interval according to whether 0, 1, or 2 of the values M(0)
and M(L) are negative.

Wherever the rate of curvature of an associated yield mechanism does not vanish, its
sign must be that of M(x). If all loads have the same direction, the rate of curvature of any
associated yield mechanism can thus have at most two sign changes in the span. This con-
dition, together with the requirement that || = |v”| should have a constant value, say x,,
uniquely determines the yield mechanism associated with the minimum weight design.
Figure 1(c) shows the rate of curvature »(x) and Fig. 1(d) the rate of deflection v(x) of this
mechanism. Note that the rate of curvature shown in Fig. 1(e) also has the constant mag-
nitude %, and furnishes a rate of deflection that satisfies the kinematical boundary con-
dition. This rate of deflection, however, does not represent a yield mechanism that is com-
patible with bending moments of the type shown in Fig. 1(b), because these bending
moments have at most two sign changes in the span whereas the rate of curvature in Fig. 1(e)
has four sign changes.

Because the rate of curvature of the yield mechanism associated with the minimum-
weight design changes sign at the sections x = L/4 and x = 3L/4 [Fig. 1(c)], the bending
moment M(x) for the minimum-weight design must likewise change sign at these sections.
This determines the “reactant line” A’B’ in Fig. 1(f) and hence the clamping moments AA’
and BB, which are negative. The resulting bending moments M(x) are indicated by shading
in Fig. 1(f). The minimum-weight design of the beam, which is given by Y(x) = |M(x)|,
may not be deemed acceptable because it has zero bending strength at x = L/4 and
x = 3L/4. This can be avoided by prescribing a minimum value Y, below which the yield
moment must not drop (see [7]).

Shield [8] has generalized the theorem of Drucker and Shield [6] to multiple loading
of sandwich plates and shells, treating a simply supported circular plate under two alter-
native rotationally symmetric loadings as an example. Instead of deducing the criterion
for minimum-weight design of beams under multiple loading from Shield’s theorem,
we will derive it from first principles, because this will be just as easy and, at the same time,
enable us to work in the condition Y(x) > Y,.

When a beam that is to carry any one of n given systems of loads S, S,, ..., S, has been
designed for minimum-weight, the individual load system S; has turned out to be either
critical or subcritical. In the first case, S; determines the variation of the yield moment
Y(x) of the minimum-weight design along some segments of the beam, the union of which
will be denoted by U,;. If the load system S, is subcritical, it does not influence the minimum-
weight design and may therefore be disregarded. It will be assumed that the load
systems have been numbered in such a manner that only §,,S,,..., S, with k < n are
critical.

The condition Y(x) > Y, may be critical or subcritical, that is, it may determine Y(x)
in some segments with the union U, ,, or it may not be relevant for the minimum-weight
design. Unless the contrary is stated explicitly, it will be assumed that the condition
Y(x) = Y, is critical. The segments in U,, U,,..., Uy, must then cover the entire span
U of the beam without overlap.
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If i <k, the load system S, is critical and, hence represents a limit loading of the
minimum-weight design Y(x). Accordingly, there exist statically admissible bending
moments M (x) for this load system such that |M{x)| < Y(x), with equality in U, only, and
an associated yield mechanism v{x) with curvature rates x{x) that vanish identically except
in U;, where »,(x) and M (x) have the same sign. If the power of the loads of S, on the rates
of deflection v{x) is denoted by P,. we have

P = j 0] Y (x) dix. 22)
U;

Next, let Y*(x) > Y, be a “safe design” for the load systems §,,5,,...,S,, that is, a
design for which none of these load systems represents a limit loading. Testing this design
with the yield mechanism v(x), we find

P, <L Je ()Y ¥(x) dx. (2.3)
It follows from {2.2) and (2.3) that |
. I dx)| Y(x) dx < . fae{x)| Y *(x) dx. (2.4)
If the curvature rates Ki(J;) satisfy |
x{x) =0 ifx¢ U;
lxi(i): “ % ifxz Ui}for i=1,2,... .k 2.9

where %, is a constant, addition of the relations (2.4) for i = 1,2,..., k furnishes

j' Y(x}dx < j Y*(x)dx. {2.6)
U-Ups+1 U~Ugs1
Now,
j Yix) < J Y*(x)dx, 2.7
U vy Ve

because Y(x} = ¥, and Y*(x) > Y, in U,,,. From {2.6) and (2.7) there follows the in-
equality

f Y{x)dx < f Y*(x) dx. (2.8)
u v

In view of (1.1), this inequality shows that the design Y (x) has a smaller weight than the safe
design Y*{(x) no matter how close the latter may come to being a limit design. Note that
(2.6) directly establishes the superiority of the design Y(x) if the condition Y(x) = ¥, is
subcritical.

3. EXAMPLES

(a) The first example concerns the minimum-weight design of a beam of the span
L = 4] that is built in at both ends and subjected to alternate load systems S, and S,.
The system S, consists of a total load 8P, that is uniformly distributed over the span
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(Fig. 2(a)]. The system S, consists of a concentrated load 2P, that acts at the center of the

span [Fig. 2(b)]. The yield moment Y(x) of the desired minimum-weight design is nowhere
to drop below the given value ¥,.

Total Load = 8P|
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F16. 2. (a), (b) Load systems. (c) Bending moments and yield moment.

On account of the symmetry of load and support, we need only be concerned with the
variation of Y(x) over half the span. Assuming first that both load systems and the lower
bound on Y(x) are critical, we tentatively divide the semi-span into the five intervals
listed in Table 1. For the load systems S, and S,, we must then find yieid mechanisms with
the following rates of curvature

—Koinl,,
Kq(x) = Koin I, (3.1)
U Oelsewhere;
—Koin I,,
Ky(x) = < Kqinls, (3.2)

. O elsewhere.
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TaBLE 1
Interval
Design
Designation Definition governed by
I, 0<x<a, M
I, a; < x < dy S,
I a, < x < a Y(x) 2 Y,
1, 4y < x < day S,
Is ay < x <21 S,

Because the rates of deflection v,(x) associated with the curvature rates (3.1) must have
vanishing first derivatives at x = 0 and x = 2/, the intervals I, and I, must have the same
length, and a similar remark applies to the intervals I, and I. Accordingly,
ay = 2l—a,, a, = 2l+a,—a,. (3.3)
In the following, the notations

é - x/l, Otl = al/l, 0(2 = az/l (3.4)
will be used. The load systems S, and S, produce bending moments of the form

M (&) = P lE(4—-)—C,. (3.5
M, () = RIE-C,, (3.6)
where C, and C, are clamping moments. The values of a, , %, , C;,and C, must be obtained
from the following conditions [see Fig. 2(c), in which a; = §, a, = %, while the full-line

curve represents the bending moments M, (x) and the dashed straight line the bending
moments M ,(x)]

M1(“1) = Mz(oh),
M (x3) = M(a3), ay = 2+a; oy,

(3.7
M) = ~ Yo,
M) = Y, Ay =20y,
These equations are linear in the dimensionless quantities
Py =PlYs. Py=PRlY,, Ci=CJ/Y. G =0, (3.8)

but nonlinear in o, and a, . It is therefore expedient to express the quantities (3.8) as functions
of the parameters o, and «,. With

A =4-20,— 20, —a?+ 30,0, — 203, (3.9)
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we find
Py =2/A, P, =202-2a+a,)/A,
2
C, = K(4—a§)—1, { (3.10)

2
C, = K(Z—Zoc1 +oag)a, +1.

/

The relations (3.10) are only valid when the load systems S, and S, as well as the lower
bound for the yield moment are critical. Limits of validity of these relations are therefore
reached when the length of one of the intervals I,, I,, or I; becomes zero. This yields the
conditions a; = 0, a; = a,, Or o, = o}, i.e. o, = 1. We now propose to rewrite these
conditions in terms of P} and P),. According to (3.10), we have

R = P,/P| = 2—2u, +a,. (3.11)
Considering first the case a; = 0, we have
R =240, (3.12)
and hence 2 < R < 3since 0 < o, < 1. With a; = 0 and (3.12), it follows from (3.9) and
(3.10) that
A =2R(3—-R), P, = 1/3R—R?. (3.13)
Multiplying both sides of the second equation (3.13) by (3R— R?*)P}, using Pi{R = P,
and solving for P, we obtain
P, = PZ/(3P7 ~1) (3.14)
as the value of P’ at which the load system S, becomes subcritical. Whenever P is smaller

than the value in (3.14), the system S, is therefore subcritical.
Next, we discuss the case a; = o, . Here,

R=2—aqa (3.15)
and hence 1 < R < 2. We have
A = 4R-1), Py = 1/[2(R-1)], (3.16)
or, multiplying the last equation by 2(R—1) and using P1R = P;,
P, = P, +4. (3.17)

Since this is the value of P, at which the system S, becomes subcritical, this system is sub-
critical whenever P, is smaller than the value in (3.17).
Finally, for «, = 1, we have

R =3-2a, (3.18)
and hence 1 < R < 3. Accordingly,
A =13-R)(R-1), P, = 8/(4R—R?*-3). (3.19)
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From the second of these equations and the definition (3.8) of P}, we find
Y, = §P1(4R—R*-3) (3.20)

as the value of Y, at which the condition Y(x) < ¥, becomes subcritical. This condition
thus is subcritical whenever Y, is smaller than the value in (3.20).

Returning now to the case where both load systems as well as the lower bound on
Y(x) are critical, we use (3.11) to express o, as a linear function of «,; and R. Substituting
this into (3.9) and the first equation (3.10), we obtain a quadratic equation for o; with the
relevant root

a, = £{4—5R+/[R?+32R+16—(24/P})]}. (3.21)
When the value of «, is known, that of «, is obtained from (3.11):
o; = R+20,—2. (3.22)

Figure 2(c) corresponds to Py = 12, P, = 24, and hence R = 2, a; = 4, a0, = %.

(b) The second example concerns the minimum-weight design of a beam of the span
L that is simply supported at the end x = 0, built in at the end x = L, and subjected to
three alternative load systems (Figs. 3a, b, ¢). The load system Si(k = 1, 2, 3) consists of a
single load of the intensity P acting at the cross section x = kL/5. To facilitate comparison
of the present minimum-weight design with that obtained by Gross and Prager [2, 3] for a

(a) lj O.ZL‘I
A ’ V

) e 0.4L l 0.6L %
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1 Z
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(¢)
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Fi1G. 3. (a), (b), (c) Load systems. (d) Bending moments and yield moment.
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load of fixed intensity and arbitrary point of application (“moving load”’), we refrain from
imposing a lower bound on the yield moment Yy(x)-

Assuming that all three load systems are critical, we tentatively divide the span into
the six intervals listed in Table 2. In the following, the notations

o, = a/L, o, = a/L, k=1,2,3)
(3.23)
oy = ao/L, &= x/L
will be used.
TABLE 2
Interval Design
Designation Definition governed by
I 0<x<a S,
I, a < Xx<a; S,
Iy a, < x < ag S,
1, Gy < x < a) S,
Is a < x<da S,
Ig ay <x<L S,

For the load system S, ., we must find a yield mechanism v,(x) that satisfies the kinematic
boundary conditions v,(0) = v,(L) = v;(L) = 0 and has the rates of curvature

xoinl,,
%,(x) = {—x5in I, (3.24)
0 elsewhere.
Since x,(x) = —v7(x), the kinetic boundary conditions furnish the relation
af = ol +ad. (3.25)

Similarly, the yield mechanism for S, furnishes a = a —a? +a? or, on account of (3.25),

af = oaF +al. (3.26)

Finally, from the yield mechanism for S;, we obtain 1 = a3 —a? +a;? or, on account of
(3.26),

ot = 32 (3.27)
The bending moment associated with the load system S, is given by
R,L¢, 0<é<02,

M () ={ (3.28)
R\LE—-02) 02<¢c<,

where R, is the unknown reaction at the simply supported end. Similar expressions can
be written for M ,(£) and M 4(&). The values of a; , &, R, , R,.and R, must be obtained from



1010 R. MaYEDA and W, PRAGER

the conditions
Mi(a)) = My(,)., M, (&) = M(a)),
My(op) = M), My(ah) = Mj(a)), (3.29)
M (ag) = — M 5(ap).

Eliminating the reactions from first four of these conditions, and using (3.25) through
(3.27), one obtains biquadratic equations for a; and a,, which yield

a, = 0-2718, o, = 0-5183 (3.30)
and hence
ay = 0-7571, oy = 0-8765. (3.31)
With the values (3.30) and (3.31), the reactions are readily obtained from (3.29). One finds
R, = 0-6802P, R, = 0:4164P, R, = 0-1884P.

Figure 3(d) shows the bending moments M,, M,, M5, and the yield moment Y of the
minimum-weight design. The dotted curve indicates the yield moment Y* of the minimum-
weight design for a moving load (see [2—4]). At the points of application of the alternative
loads considered here, the values of Y very slightly exceed those of Y*; for £ > «,, however.
Y* consistently exceeds Y.
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Résumé—L’exposé examine le dimensionnement & poids minimum de poutres 4 section variant d’une fagon
continue qui ont & supporter 1’'un quelconque de n systémes de charges. Le poids par unité de longueur est supposé
atre donné par w(x) = a+b¥(x), ol a et b sont des constantes et Y(x) est le moment de limite élastique 4 la section
x. Une méthode de dimensionnement est présentée qui reste valable pour les cas extrémesoun = letn = o et
ceci permet au dessinateur d’établir une valeur minimum Y, au-dessous de laquelle il n’est pas permis au moment
de limite élastique de baisser. L’emploi de la méthode est illustré par des exemples.

Zusammenfassung—Diese Arbeit behandelt Minimalgewichts-Entwiirfe fur Triger mit stetig verdnderlichen
Querschnitten, die jedes von n Lastsystemen tragen konnen. Das Gewicht je Langeneinheit wird als w(x) = g +bY(x)
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angenommen, wobei @ und b Kostanten sind, und Y(x) das Fliessmoment beim Querschnitt x. Eine Entwurfs-
methode wird gegeben, die bei Extremfillen n = 1 und n = oo giiltig bleibt und die es erlaubt den Minimalwert

Y, vorzuschreiben, unter welchen das Fliessmoment nicht absinken darf. Die Anwendung der Methode wird
gezeigt.

AbcTpakT—B paboTe paccykaaeTcs BONPOC NPOEKTHPOBAHNS HA MHHHMYM Beca 6aJiok, ¢ HIMEHAIOIUMCS
HeNpPEPBIBHO HONEPEYHBIM CEYEHHEM,, KOTOPAIE JOJDKHBI BOCIIPHHEMATb HEKOTOPOE U3 7 CHCTEMOB Harpy3KkH.
Bec Ha enuHMIy AnvHEL 3a7aH B dopMme w(x) =a+bY(x), rae a u b apnsAOTCA KOHCTaHTaMH, a Y(x) o603Ha-
YaeT MOMEHT TEYCHHA TOIMEPEYHOTO CeYeHUs x. MeTQl MPOeKTHPOBAHHS TAKOB, 4TO 3aKJIOYaeT 3HAuCHUE
IS IKCTPEMAJIBHBIX CIIyYaeB, T.6. i 1 = 1 M n = oo, [To3panser TakKe MPOCKTHPOBIUKKY ONPEAENATH
MHHBMAaJIBHOE 3Ha4YeRue Yo, HHKE KOTOPOTO He AONYCKAETCA CHHXATh MOMEHT Tedehus. [IpUMepst uiio-
CTPYIOT MCNONL30BAHUE METOOA.



